植物生化学チェックリスト③

3. 細胞小器官

3-1. 膜脂質
(1) □ 生命の基本単位は「 ア 」である.
(2)□「 ア 」は「 イ 」によって外界と仕切られている.
(3) □ 生体膜は主に「 ゥ 」と「 エ 」でできている.
(4) □ 膜脂質の主要成分であるリン脂質は「 オ 」に2分子の「 カ 」
および親水基が結合してできている.
▶ (5) □ 上記 (4) の膜脂質の構造を模式図で表すことができる.
(6) □「 オ 」と「 カ 」は「 キ 」結合でつながっている.
(7) □ 膜脂質に多く含まれる「 カ 」として C16:0 の「 ク 」,
C18:1 の「 ケ 」が挙げられる.
) (8) □ 上記(7)の表記でたとえば C18:1 の 18 は「 □ 」の数,
1 は「 サ 」の数を示す.
(9) □ 親水基の一例としてコリン (choline) が挙げられる
膜脂質分子内でコリンは「シュー」と結合している.
(10) □ フォスファチジルコリンは「 ス 」とも呼ばれる.
)(11) □ 動物は膜脂質としてリン脂質を多く含むが、植物では「 セ 」の含量が高い.
(12)□ 膜脂質は二重層を形成することにより内側が「 ソ 」,両外側が「 タ
となり, 細胞(およびその内部の区画)を隔てている.
3-2. 細胞小器官(オルガネラ)
(13) □ ミトコンドリアと葉緑体(色素体)は、「チェー」を通じて細胞小器官になった。
と考えられている.
(14) □ ミトコンドリアの起源は「 ツ 」,
葉緑体の起源は「 テ 」であると考えられている.
(15) □ 資料 5 図 2 を見て, 各細胞小器官の名称を挙げることができる.
(16) □ ミトコンドリアと葉緑体については内部の膜、 可溶性画分の名称を示すことができる.
3-3. 複膜構造系
) (17) □ ミトコンドリアと葉緑体について, 膜構造の進化を含めて考察することができる.
、、、、
印無 既に知っていて欲しい, または他の項目の説明を受けて理解して欲しい.

● この講義で説明が必要と考えている項目.

関連した基本知識,説明の優先度は下げる。